HOME > Laboratories


Theoretical Particle, Subatomic, Nuclear, and Astro Physics

Theory of Elementary Particles

  • Hiroshi Suzuki, Professor
  • Ken-ichi Okumura, Assistant Professor
Our group studies various subjects in the frontiers of the theoretical elementary particle physics. These include: Non-perturbative methods in quantum field theory with higher symmetries, such as lattice QCD, lattice formulation of supersymmetric field theories, the conformal bootstrap method, and the complex Langevin method; Particle phenomenology on the basis of supersymmetry and the origin of the electroweak symmetry breaking and related cosmological problems; Low-energy effective description of QCD on the basis of low-energy degrees of freedom and its properties under Wilson’s renormalization group flow; Phenomenological and cosmological aspects of superstring theory and D-branes; Particle phenomenology on the basis of the extra dimension; The sphaleron and the leptogenesis in supersymmetric models. This list is still growing… The followings are some notable recent activities carried out in our group.
Read more

Theory of Subatomic Physics and Astrophysics

  • Koji Harada, Professor
  • Yutaka Ookouchi, Associate Professor
  • Kentaro Kojima, Associate Professor
  • Shuichiro Tao, Assistant Professor
  • † Faculty of Arts and Science
Various aspects of theoretical subatomic physics and astrophysics (string theory, quantum field theory, unified theory, hadron physics, gravitational wave, supernova physics).
Read more

Theoretical Nuclear Physics

  • Emiko Hiyama, Professor
  • Yoshifumi R. Shimizu, Associate Professor
  • Takuma Matsumoto, Assistant Professor
Our group is making advanced research work on nuclear physics from theoretical point of view. Here the nucleus is a finite quantum-mechanical many-body system, which is composed of two kinds of elementary particles, protons and neutrons. We are also working on hadron physics, where the quarks and gluons are basic ingredients and they are govern by the fundamental theory of strong interaction, quantum chromodynamics (QCD).
Read more

Theoretical Astrophysics

  • Masa-aki Hashimoto, Professor<
  • Mami Machida, Assistant Professor
Theoretical Astrophysics group is a part of the department of physics, particle physics group of Kyushu University. We have been carrying astrophysics research since 1998. We conduct research in a wide range of topics including stellar evolution, supernova explosions, nucleo-synthesis, cosmology, accretion disks, astrophysical jets etc.... You can find more information about our research, teaching and outreach activities, visiting our home page. Seminars and Colloquium are scheduled here and all you are welcome to join with us. We highly appreciate your comments and participation.
Read more

Experimental Particle and Nuclear Physics

Experimental Particle Physics

  • Kiyotomo Kawagoe, Professor
  • Junji Tojo, Associate Professor
  • Tamaki Yoshioka, Associate Professor<
  • Susumu Oda, Assistant Professor
  • Taikan Suehara, Assistant Professor
  • Hidetoshi Otono, Assistant Professor
  • † RCAPP
Our group is conducting experimental research projects using state-of-the-art accelerators for understanding of the fundamental law of the universe. Our current projects are as follows:
  1. The ATLAS experiment at the LHC
  2. The International Linear Collider project
  3. Particle physics experiments using highly intense muon beams at J-PARC
  4. Fundamental physics experiments using low energy neutrons at J-PARC
Read more

Experimental Nuclear Physics

  • Kosuke Morita, Professor
  • Tomotsugu Wakasa, Professor
  • Satoshi Sakaguchi, Associate Professor
  • Takashi Teranishi, Associate Professor
  • Kunihiro Fujita, Assistant Professor
  • Shintaro Go, Assistant Professor
Our group studies nucleon and hadron many body systems experimentally. Accelerators in Kyushu University and in RIKEN and RCNP are used. Current research topics are as follows:
  1. Search for new superheavy element. Spectroscopic and chemical studies of the nuclei of the heaviest elements.
  2. Spin-isospin responses and nuclear medium effects in stable and unstable nuclei.
  3. Spectroscopy of neutron-rich or proton-rich unstable nuclei.
  4. Low-energy nuclear physics. Technical developments using Kyushu Tandem accelerator.
Read more

Condensed Matter Theory and Statistical, Surfacem and Many-Body Physics

Condensed Matter Theory

  • Jun-ichi Fukuda, Professor
  • Jun Matsui, Lecturer
Research topics in our group cover various phenomena in non-equilibrium systems and complex systems. Our focus is on theoretical and computational physics of soft condensed matter, and current research subjects include:
  1. Self-organized structures and dynamics of liquid crystals
  2. Optical properties of ordered structures in soft matter
  3. Field theory of polymeric systems
  4. Poly-amorphism and crystallization
  5. Slowing dynamics near the glass transition
Read more

Statistical Physics

  • Hiizu Nakanish, Professor
  • Kiyohide Nomura, Associate Professor
Our group studies equilibrium and non-equilibrium statistical physics theoretically on various systems. Recent research topics include granular media, polymer physics, stochastic processes, bio-physics, low-dimensional quantum systems, application of quantum field theory on statistical physics.
  1. Shear thickening in granular-fluid mixture
  2. Non-equilibrium dynamics of single polymers
  3. Statistical mechanics of ring polymer solutions
  4. Electro-rheological effect in binary fluids
  5. Low dimensional quantum systems
Read more

Surface Physics and Many-Body Physics

  • Hiroshi Kawai, Associate Professor
  • Osamu Narikiyo, Associate Professor
Our group studies dynamical systems theoretically. One focus is the solid state surface with multiple symmetries. Another focus is the strongly correlated electron system. Current research topics are as follows:
  1. The vibration of the dimer on Si(001) surface
  2. Critical slowing down on Ge(001) surface
  3. Hall effect in the normal state of high-Tc superconductors.
  4. Ward identities for thermal transport phenomena.
Read more

Experimental Condensed Matter Physics

Physics of Magnetism

  • Hirofumi Wada, Professor
  • Akihiro Mitsuda, Associate Professor
Our group studies magnetic properties of metallic materials (alloys and compounds) from both fundamental and applied aspects of physics. Current research topics are as follows:
  1. Magnetocaloric effect of first-order magnetic transition systems.
  2. High-field transport properties of itinerant electron metamagnetism.
  3. Valence instability of 4f electron systems.
  4. Exotic phase transitions of superconducting systems.
Read more

Quantum Nanophysics

  • Yukio Watanabe, Professor
  • Takeshi Arai, Assistant Professor
  1. Nanoscale understanding of electronic state and conduction in insulators and their impact on ferroelectrics. For this, we use UHV including UHV-SPM with standard measurements, FEM analysis and DFT, and propose theories.
  2. Read more
  3. Our group studies thermal conductivity by thermal phonons at very low temperature in non-periodical systems experimentally. At very low temperature, mean free path and wave length of thermal phonons become longer comparative with characteristic lengths of artificial structures. Experimental studies of thermal phonon behaviors in non-traditional systems are possible. For example, the localization of phonons is expected in quasi-periodic structure such as Penrose tiling [Fig.1] and it makes thermal insulation in cryogenics at very low temperature. Other target is non-reciprocal systems, Ratchet effect is expected [Fig.2]. It is useful for normal-insulator-superconductor tunnel junction refrigerator.
  4. Read more

Solid State Physics

  • Takashi Kimura, Professor
  • Kohei Ohnishi, Assistant Professor
  • Kazumasa Yamada, Assistant Professor
We are interested in electron-transport phenomena in nano-scale systems composed of different types of functional materials such as ferro- and antiferro-magnetic materials, superconductor, normal metal and insulator. Especially, we focus significantly on the influence of electron spin in the transports, so called spin-dependent transports. Moreover, understanding and manipulating the dynamical motions of spin is also important research subject. The specific example of the research subject is as follows.
  1. Understanding electrically and thermally driven spin-current transports
  2. Interplay between spin-polarized electron and cooper pair
  3. Nonlinear motion of nano-scale spin dynamics in patterned ferromagnetic film
  4. Development of novel nanoelectric devices such as spin memristor and spin filter
Read more

Optical Condensed Matter Physics

  • Takuya Satoh, Associate Professor
Our group studies experimentally the interaction of light with magnetic/dielectric materials. In particular, we are interested in ultrafast and coherent control of magnetism by use of temporally and spatially shaped femtosecond light pulses, and understanding of the mechanisms. Current research topics are as follows:
  1. Terahertz Spintronics
  2. Opto-Magnonics
Read more

Physics of Complex Systems and Fluids

Physics of Complex Systems

  • Yasuyuki Kimura, Professor
  • Daisuke Mizuno, Associate Professor
  • Shio Inagaki, Associate Professor
  • Takayuki Ariga, Research Associate Professor
  • Yasuyuki Iwashita, Assistant Professor
We are the experimental research group that investigates Non-equilibrium Physics of “soft materials” (e.g. colloids, polymers and liquid crystals). Much of the diversity in nature depends on the complex hierarchical ordering of these soft materials and their slow cooperative dynamics, that are the focus of our study. Dynamic self-assembly of soft materials, for instance, creates exquisite structures in living organisms that are under constant activation by their own metabolism. We investigate such nonequilibrium processes that obviously do not obey the statistics of thermodynamic equilibrium, by developing novel state-of-the-art experimental and theoretical techniques.Read more

Complex Fluids

  • Yusuke T. Maeda, Associate Professor
Lab. of complex fluids studies non-equilibrium and nonlinear dynamics involved in biological systems from experiment and theoretical approaches. The goal of our laboratory is to bring novel understandings of physics of collective systems far from equilibrium. To answer " what if life?" from physical view points, primary efforts are focused in projects listed below:
  1. Fluid dynamics and transport phenomenon out of equilibrium
  2. Collective behaviors of active matters
  3. Biophysics of artificial cell assembly
Read more